
PMM U.S.S.R.,Vo1.47,No.2,pp. 214-219,1984 0021-a928/84 810.00+0.00 
Printed in Great Britain 0 1984 Pergamon Press Ltd. 

UDC 539.3 

ON THE APPLICATION OF THE METHOD OF SYMBOLIC INTEGRATION 
IN THE THEORY OF PIEZOCERAMIC SHELLS* 

V.Z. PARTON and N.A. SENIK 

A variant is proposed of the theory of piezoceramic shells, with various directions 
of polarization and means of electric loading, based on the method of symbolic in- 
tegration /l/. 

The Kirchhoff-Love hypotheses with additional assumptions about thevariationofelectric 
field components along the thickness of the shell was used in /2,3/ for calculating thinpiezo- 
ceramic shells polarized along the normal to the shell median surface. Equations of motion 
were obtained in /4/ for a shell with the same polarization direction on the basis of the 
variational principle of electroelasticity and the quadratic approximation of the electric 
field potential along the thickness coordinate. Shells of revolution with meridional polar- 
ization and various conditions of electrical loading were considered in /S/, where the 
"electrical" correction to the Kirchhoff-Love hypotheses was introduced, which allowed a 
considerable simplification of the solution of the problem in the case of an arbitrary shell 
of revolution. 

1. Consider a piezoceramic shell of thickness 2h whose faces are either completely cov- 
ered by electrodes or are free of them. The equations of equilibrium obtainable with the 
Kirchhoff-Love hypotheses are of the form /6/ 

or {z',, T,, s, M,, M,, H} = -A,Asqi, L, {...} = -AxAd,, L tee.) = qn (1.1) 

Using the Kirchhoff-Love hypotheses we write the equationsofstate forthepiezoceramic 
shell with the polarization thickness in the form 

u,2 = SP - Cl.2 
E 

011 - cll*ell + cdem - ed&, 2 el2 

az2 = cls*ell + cll*% - e,,*ES 

08 = e,,*E, + esl* (e,, + ea3, D1 = elISEt (i = 1, 2) 

(1.2) 

(1.3) 

Taking into account (1.2) we represent the relation between stresses, moments, deforma-. 
tions, and the electric field potential in the form 

T,,, - Zcrr*h (sr.2 + v,~,,) + eS1*To, S = (CII~ - cm”) ho (1.4) 

The quantities To and MO introduced 

To=cp+- ‘P-, 

where cp is the electric field potential, and cpf are its values at Z =j& 

Taking into account the relation of e,, eZ, w and xl,xp,z with displacements of the median 

shell surface, and the Maxwell equations for piezoceramic body /2,3,8/ 

div D = 0, rot E = 0 (1.6) 

in (1.4) are determined by the relations 

Mo=h(cp++cp-)- j- cpdz 
-h 

(1.5) 

we obtain from Eqs.(l.l) and (1.3)- (1.6) a closed system of equations in the potential and 
the components of the displacement vector of the median surface of the shell. In view of the 

complexity of solution of the obtained system of equations, we use the method of symbolic in- 

tegration /l/ widely applied in problems of thermo-elasticity of thin shells /7/. In conform- 

ity with that method we represent the first of Eqs.(l.6) with allowance for (1.3) andforthe 
second of Eqs.(l.6) 
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(1.71 

We introduce the integral characteristics of the electric field potential by the rela- 
tions 

(1.8) 

Writing the general solutions of (1.7) in the form 

4p = co9 PG (al., aa) + sin PCS (ah at) + 
em* (xl + %) 

@3*p= 

we obtain in conformity with (1.81 Qf, and d&after which the field potential is represented 
by the formula 

(1.9) 

Let us consider two basic 
lo. The face surfaces of 

ial cp* = &V. is specified on 

cases of loading. 
the shell are covered with electrodes and the value of potent- 
them. Then from (1.5) we have 

T, = 2V,, M, = -01 

Satisfying condition ~(a,,~,fh) = V,, from (1.9) we have the equations for determining 
@, and Q,. Retaining in them terms up to (HO', we obtain the respective approximate equa- 
tions 

After the determination of @I,(Dp, we calculate the field potential using the approxi- 
mate formula 

obtained from (1.9) on the assumption that the electric field potential varies over the shell 
thickness in conformity with the cube law. If, however, one makes the assumption that the 
field potential distribution over the shell thickness is quadratic, then we have 

In that case we have 

Qt, = vsvJL* 

(1.11) 

(1.12) 

and the equation for a1 remains unchanged. 
The boundary conditions, specified on the shell contour, consist of the usual mechanical 

conditions and the conditions for the potential 

where y is the angle 
ate line a, and Dis 

Rip--$-, R=y&$T& (1.13) 

between the normal to the contour of the median surface and the coordin- 
the electric induction. 

In conformity with (1.81 from (1.13) we obtain 

h 

(i = 1,2) 
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When the field potential is distributed in 
for @s is not specified. 

2O. Let the face surfaces Z=*h of the 
normal component of electrical induction vector 

accordance with (1.111, the boundary 

shell be free of electrodes, and on 
is specified 

condition 

them the 

(1.14! 

Using the first of relations (1.3) and satisfying conditions (1.14) we obtain the equa- -_ 
tions for QI,, Qpp. Retaining in the expansion of operators appearing in these 
terms up to (ph)%, we obtain the approximate equations 

equations the 

Note that the first of Eqs.(l.lS) is exact. 
Assuming that the field potential is distributed over the shell thickness 

with (1.10) law, then for T, and&f, with (1.91, and (1.15) taken into account, 
respective approximate formulas 

If the field potential is distributed over the shell thickness according to (1.11) I we 
can approximately consider that 

(1.15) 

in accordance 
we obtain the 

(1.16) 

The expressions for MB and @, remain unchanged. 
Assuming that on the part of the shell side surface S1 the potential V1 is specified, 

while on part & = Sd&(S, is the side surface of the shell) the condition of the form (1.13) 
is given, we obtain 

CD, = ZV,h, (9, = 0 on S, 

R@,l = -ai* (i = 1,2) on S, 
(1.17) 

If the permittivity of the external medium is considerably smaller than the permittivity 
of ceramics, for instance in the case of air, we can assume that D+ =D-= 0. OtherwiseD+,D- 
are unknown quantities whose determination requires the consideration of the equations of the 
electrostatics the external medium. 

2. Consider a piezoceramic shell of thickness 2h polarized along one of the coordinate 
lines (for definiteness,for example,along aI). Obviously Eqs.(l.l) and (1.6) hold for a 
shell with such polarization direction. From the equations of state for ceramics polarized 
along the coordinate line a,, taking into account the Kirchhoff-Love hypotheses, we obtain 

alI = cag*ell -!- c,3*1323 - e,t*E,, u,, = c5 q2 - e&, (2.1) 

%2p = %*%I + g,,*%, - 331*E, 

D, = %I%,, D, = elSelE + e,PE,, D1 = fh*& f %I*%+ h*e,, 

where the following notation has been used: 

The formulas for stresses and moments are of the form 

(2.2) 
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where 0,,0* are defined by relations (1.8). 
Let us write the first of Eqs. (1.6). Taking into account the last three relations (2.11, 

(2.3) 

0z 
The electric field potential is expressed in terms of integral characteristics 01 and 

‘?= 2sinqh qcosqz 01+ 
q’ sin qs 

2 sin qh (1 - qh ctg qh) CD, 3sinq:;:!$Etgqh)f”+‘+ (2.4) 

Omitting the obvious transformations, we present the final equations for the determina- 
tion of 0, and 0% and, also, indicate the necessary boundary conditions corresponding to lo 
and 2O. 

lo. Assuming the potential of field to vary over the shell thickness in conformity with 
the cube law 

we obtain the approximate equations for 0, and 0, 

(l_q)0l y1, (l_$l)0% =y - q 

If the field potential varies according to the law 

(2.5) 

(2.6) 

then for 01 the first of Eqs. (2.5) is valid, and0,is determined by the formula (1.12). From 
the condition 

cos y D, + sin y D, = D on S, 

taking into account the last two relations (2.1), we obtain the boundary conditions for 0,and 

0'21 which finally assume the form 

Rr0, = -0,* + 2h {Cos y (a81*en + eIs*t3J + e16 sin JW} (2.7) 

&&z-0**+ $-toosv(aaP%a + es& + el6sinp} 

R I” fj&.y& a +&Q& 

If however the field potential varies according to (2.6), the second condition in (2.7) 
is omitted. 

2O. The approximate equations for the determination of 0r and 0%, obtained from condi- 
tion (1.14), ere of the form 
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The boundary conditions on portion S,, where potential v1 is given, of the form (1.17) 
and on portion S,, where the normal component of induction vector is given are of the form 
(2.7). 

3. Consider the problem of stable oscillations of a rectangular piezoceramic plate. Let 
a and b be linear dimensions along the z and I axes, respectively. The plate is polarized 

over the thickness Zh, the face surfaces are without electrodes, and on them the constant 
value of normal component of electrical induction vector that harmonically varies is time. Let 
us assume that the plate performs only bending oscillations, and that D+-D-= ~erp(iQt),D++ 
D-=0. In conformity with formulas (l-l), (1.4), (1.15) and (1.16) with allowance for the 
identity 

for the determination of deflection ID* = w/a and the integral characteristics of the electric 
field potential we obtain 

v,v*lo* = &3-'~,V*C, = I,@*= 0 (3.1) 

The mechanical boundary conditions that correspond to a hinged edge are of the form 

ti = 0, 
aw v, fk.8 a%* 

al;a+ i+k,P w=Q'. %=fi (3.21 

Assuming that the contour of the plate is covered by electrodes and the value of its 
potential is zero, we write the boundary condition on the contour for G, 

G, = 0 (3.3) 

It follows from relations (3.1)- (3.3) that the problem of forced oscillations of the 
piezoceramic plate under the action of induction difference, reduces to the problemofforced 
oscillations of an isotropic plate under the action of the specified (on the contour bending) 
moment of the quantity Q': In the absence of the piezoeffect for the assumed frequency we 
have I'= pWa%,,*. Hence the allowance for the piezoeffect results in a hightening of the 

resonant frequency by a factor of (1 i-k,%). For piezoceramic PZT = 4[8] k,'= 0.3283. The electric 

field potential, after solving Eq.(3.1) and satisfying the condition (3.3) is determined by 
formula (1.11). 
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